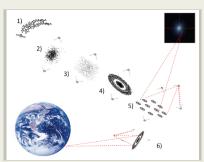
Orbiting Rainbows

Completed Technology Project (2014 - 2016)

Project Introduction

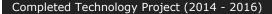

Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultralightweight space optics and, ultimately, in-situ space system fabrication. The concept is to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface.

Anticipated Benefits

Allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we will examine the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation.

Primary U.S. Work Locations and Key Partners

Concept diagram


Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destination	3
Images	4
Project Website:	4

NASA Innovative Advanced Concepts

Orbiting Rainbows

Organizations Performing Work	Role	Туре	Location
	Lead Organization	NASA Center	Pasadena, California
California Institute of Technology(CalTech)	Supporting Organization	Academia	Pasadena, California
Polytechnic of Milano, Italy	Supporting Organization	Academia	Milano, Outside the United States, Italy
Polytechnic of Torino, Italy	Supporting Organization	Academia	Torino, Outside the United States, Italy
Rochester Institute of Technology(RIT)	Supporting Organization	Academia	Rochester, New York
University College London	Supporting Organization	Academia	Dorking, United Kingdom
University of Parma	Supporting Organization	Academia	Parma, Outside the United States, Italy
University of Rochester	Supporting Organization	Academia	Rochester, New York

Primary U.S. Work Locations		
California	New York	

Project Transitions

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

NASA Innovative Advanced Concepts

Project Management

Program Director:

Jason E Derleth

Program Manager:

Eric A Eberly

Principal Investigator:

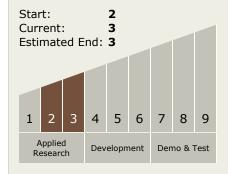
Bruno M Quadrelli

Co-Investigators:

Darmindra D Arumugam Scott A Basinger Grover Swartzlander

Orbiting Rainbows

Completed Technology Project (2014 - 2016)



September 2016: Closed out

Closeout Summary: Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-liq htweight space optics and, ultimately, in-situ space system fabrication. Typicall y, the cost of an optical system is driven by the size and mass of the primary ap erture. The ideal system is a cloud of spatially disordered dust-like objects that c an be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent under standings in the physics of optical manipulation of small particles in the laborato ry and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achi eving the feasibility of constructing one single aperture out of the cloud is the m ain topic of this work, it is clear that multiple orbiting aerosol lenses could also c ombine their power to synthesize a much larger aperture in space to enable chal lenging goals such as exo-planet detection. Furthermore, this effort could establi sh feasibility of key issues related to material properties, remote manipulation, a nd autonomy characteristics of cloud in orbit. There are several types of endeav ors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures a llow for unprecedented high resolution to discern continents and important featu res of other planets, hyperspectral imaging, adaptive systems, spectroscopy ima ging through limb, and stable optical systems from Lagrange points. Furthermor e, future microQminiaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other ass ociated capabilities. Our objective in Phase II was to experimentally and numeric ally investigate how to optically manipulate and maintain the shape of an orbitin g cloud of dust-like matter so that it can function as an adaptable ultra-lightweig ht surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of a pertures at a reduced cost, enables extremely fault-tolerant apertures that cann ot otherwise be made, and directly enables classes of missions for exoplanet det ection based on Fourier spectroscopy with tight angular resolution and innovativ e radar systems for remote sensing. In this task, we have examined the advanc ed feasibility of a crosscutting concept that contributes new technological approa ches for space imaging systems, autonomous systems, and space applications o f optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate syste m architectures for the space-borne cloud as an aperture. Summarizing the findi ngs, we found that the technology enabling the Granular Imager is feasible, but is also complex and requires advancements in different areas. During Phase II, t echnology readiness levels for the various component technologies were determi ned, as well as mass, power, and cost for a representative system configuration. The wavefront control process follows the following steps of a multistage control architecture: Granular Cloud Shaping, Sub Aperture Coarse Alignment, Figure C ontrol, and Computational Imaging. The main application considered was a refle ctive imaging system for astrophysics, but many unexplored applications of gran

Technology Maturity (TRL)

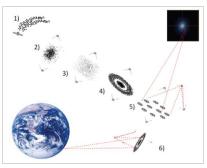
Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.2 Mission
 Infrastructure,
 Sustainability, and
 Supportability
 - □ TX07.2.3 Surface Construction and Assembly

Target Destination

Earth


NASA Innovative Advanced Concepts

Orbiting Rainbows

Completed Technology Project (2014 - 2016)

Images

Orbiting Rainbows ConceptConcept diagram
(https://techport.nasa.gov/imag
e/102263)

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

